产品/选型

水分测定仪如何选择?

您的公司需要水分测定,却不知如何选择?国内的品牌好还是国外的品牌合适?联系我们,金钻给您更合适的水分测定方案!【详细】

淀粉是什么

发布日期:2022-07-14   点击次数:
      在农作物籽粒、根、块根重点分是经光合作用合成,具有颗粒结构与蛋白质、纤维、油脂、糖、矿物质等共同存在。淀粉颗粒不溶于水,工业上便是利用这种性质,采用水磨法工艺,将非淀粉杂质除去,得到纯度高的淀粉产品。 1、化学组成     淀粉生产工艺和设备发展很快,已达到和高的技术水平,但还不能将淀粉无完全份除去,产品仍含有很少两杂质。     淀粉是在水介质中光合作用合成,颗粒含有水分,一般在10-20%,淀粉颗粒水分是与周围空气中水分呈平衡状态存在的,空气干燥会散出水分,空气潮湿会吸收水分。水分的吸收和散失是可逆的。                      表一 淀粉化学组成 淀粉 水分% 脂(干基%) 蛋白质% 灰分% 磷% 玉米 13 0.60 0.35 0.10 0.015 小麦 14 0.80 0.40 0.15 0.060 粘玉米 13 0.20 0.25 0.07 0.007 马铃薯 19 0.05 0.06 0.40 0.080 木薯 13 0.10 0.10 0.20 0.010    脂类化合物与链淀粉分子结合成络合结构存在,对淀粉颗粒糊化、膨胀和溶解有强抑制作用。 2、淀粉颗粒     在光学显微镜,篇光显微镜和扫描电子显微镜下观察,玉米淀粉颗粒较小,呈多三角形;马铃薯淀粉颗粒较大,呈椭圆形;木薯淀粉颗粒有的呈凹形。 表二 不同淀粉颗粒大小 淀粉 大小范围(μm) 平均范围(μm) 玉米 5-25 15 马铃薯 15-100 33 木薯 5-35 20 甘薯 15-55 30 小麦 2-35 -- 高粱 5-25 15 大米 3-8 5     淀粉颗粒具有结晶性结构。颗粒的一部分具有结晶性结构,分子间具有规律性排列。另一部分为无定形结构,分子间排列杂乱,没有规律性。     淀粉分子具有众多的羟基,亲水性很强,但淀粉颗粒球不溶于水,这是因为羟基之间通过清廉结合的缘故。颗粒中水分也参与氢链的结合。     淀粉颗粒具有渗透性,水和水溶液能自由渗入颗粒内部。淀粉与稀碘溶液接触很快便蓝色,表明点溶液和块渗入颗粒内部与其中链淀粉起反应呈现蓝色,蓝色的淀粉颗粒在于硫代硫酸钠溶液相遇时,蓝色有同样很快消失,表明溶液很快渗入颗粒内部。起了反应。这种快速的颜色变化表明,淀粉颗粒具有很高渗透性。工业上采用化学方法生产变性淀粉便是利用颗粒的渗透性,水起到载体作用。淀粉颗粒内部有结合无定形区域,后者具有较高的渗透性,化学反应主要发生在此区域。 3、直链和支链淀粉     淀粉是有葡萄糖组成的多糖高分子化合物,有直链状和支链状两种分子。                    表三  不同品种淀粉的直链和支链淀粉含量 淀粉 直链淀粉含量% 支链淀粉含量% 玉米 27 73 粘玉米 0 100 高粱 27 73 粘高粱 0 100 稻米 19 81 糯米 0 100 小麦 27 73 马铃薯 20 80 木薯 17 83 甘薯 18 82 高直链玉米 70 30     淀粉化学结构式微(C6H10O5)n,n为不定数,因为直链淀粉和支链淀粉多是多种大小的高分子化合物。C6H10O5为脱水葡萄糖单位,淀粉分子是葡萄糖单位,淀粉分子是葡萄糖脱去水分子单位经由糖疳链连接成的高分子。组成淀粉分子的脱水葡萄糖单位数量称为聚合度,被C6H10O5分子量162乘得淀粉分子量。     马铃薯链淀粉聚合度在1000—6000之间,平均约3000,玉米链淀粉聚合度在200—1200之间,平均约为800。支链淀粉聚合度平均在100万以上,分子量在2亿以上,为天然高分子化合物中更加大的。谷物和薯类支链淀粉分子大小相同。淀粉分子间有的是经由水分子经氢链结合,水分子介于中间,有如架桥。 4、糊化     混合淀粉于水中,搅拌的乳白色,不透明悬浮液,成为淀粉乳。将淀粉乳加热,淀粉颗粒溪水膨胀,发生在颗粒无定形区域,结晶束具有弹性,仍保持颗粒结构。随温度上升,吸收水分更多,体积膨胀更大,达到一定温度,高度膨胀淀粉间互相接触,变成半透明的粘稠状,成为淀粉糊。这种由淀粉乳转变成淀粉糊的现象称为糊化。淀粉发生糊化的温度称为糊化温度。淀粉乳糊化,透明度增高,颗粒的偏光十字消失。淀粉颗粒开始消失便是糊化开始的温度,约98%颗粒偏光十字消失为糊化完成的温度。 5、淀粉糊     淀粉在不同工业中用途广泛,几乎都是加热是淀粉乳糊化,应用所得到的淀粉糊,起到增稠、凝胶、粘合、成膜和其他功用。不同中淀粉在性质方面存在差别,如粘度、粘韧性、透明度、抗剪切力、稳定性、凝沉性等。 表四  淀粉糊性质 淀粉 抗剪切稳定性 粘度 粘韧性 透明度 凝沉性 玉米 高 中 短 不透明 强 粘玉米 低 中高 长 半透明 很弱 小麦 中 中低 短 不透明 强 高粱 中 中 短 不透明 强 大米 中 中低 短 不透明 强 马铃薯 低 很高 长 半透明 中 木薯 低 高 长 半透明 弱 甘薯 低 高 长 半透明 中     马铃薯淀粉糊化膨胀能力更加大,糊的粘度上升快而高,但继续搅拌受热,粘度迅速降低,这是应为膨胀颗粒强度低,受搅拌剪切影响易于碎裂。粘度降低大,也就是热粘度稳定性低。玉米淀粉颗粒较小,热粘稳定性较高。冷却淀粉糊,粘度增高。     淀粉在较低温度下开始糊化,年度上升快,达到更加高值,称更加高热粘度,也成峰值粘度。     继续搅拌受热,粘度迅速降低。在95℃继续保温1小时,粘度降低的程度表示糊的热稳定性;降低大,稳定性低。冷却到50℃粘度升高,升高的温度表明凝沉性的强弱。在50℃保温一小时,粘度的变化表示糊冷粘度稳定性。     用一根木片方乳淀粉糊中,取出糊丝的长度表示粘韧性的高低。马铃薯、木薯、蜡纸玉米淀粉属于长糊,玉米及谷物淀粉属于短糊。     淀粉乳糊化,透明度增高。     机械搅拌淀粉糊产生剪切力,引起膨胀淀粉颗粒破例,粘度降低。     玉米淀粉颗粒膨胀较小,强度较高,抗剪力稳定性高。     储存稀淀粉糊较长时间,溶解的链淀粉分子间趋向平行排列,经氢键结合成结晶结构,水不溶解,会逐渐变混浊,又白色沉淀下沉,水分析出,胶体结构破坏,这是由于溶解状态又重新凝结而沉淀。这种现象称为凝沉。低温度和高浓度都促凝沉发生,链淀粉分子长短与凝沉性强弱有关。较高的糊浓度(如玉米淀粉糊浓度70%以上)冷却时,很快凝结成半固体的凝胶,也是由于凝沉作用。 检测淀粉的水分,金钻仪器为您推荐:JT-K6卤素水分测定仪